Associated Left k-Fibonacci Numbers, Generating Function and their Identity

Mansukh P. Arvadia

Shri U P Arts, Smt. M G Panchal Science \& Shri V L Shah Commerce College, Pilvai, Gujarat, India

Abstract

In this paper we define the associated left k-Fibonacci numbers, generating function and we give interesting identities of it.

Keywords: Associated k-Fibonacci numbers, associated left k-Fibonacci numbers, generating function, recurrence relation.

I. INTRODUCTION

The Fibonacci sequence $\left\{F_{n}\right\}_{n=0}^{\infty}$, starting with the integer pair 0 and 1 and each Fibonacci number is obtained by the sum of the two preceding it. We define as $F_{n}=F_{n-1}+F_{n-2} ; n \geq 2[5,8]$. The first few terms of the Fibonacci numbers are $0,1,1,2,3,5,8,13,21,34,55,89, \ldots .$. The Fibonacci sequence has been generalized in many ways, some by preserving the initial conditions, and others by preserving the recurrence relation [5,6,7,9].
In [1] Alvaro H. Salas defined the sequence $\left\{A_{k, n}\right\}_{n=0}^{\infty} \quad$ associated to $\quad\left\{F_{k, n}\right\}_{n=0}^{\infty}$ as $A_{k, n}=F_{k, n}+F_{k, n-1}$ where $A_{k, 0}=1$ for $n=1,2,3, \ldots$. He then defines associated k - Fibonacci numbers by recurrence relation

$$
A_{k, n}=k A_{k, n-1}+A_{k, n-2} ; n \geq 2 \text { where } A_{k, 0}=1
$$

In this paper we define associated left k - Fibonacci sequence $\left\{A_{k, n}^{L}\right\}$ and prove some interesting properties of associated left k - Fibonacci numbers [2,3]. Despite its simple appearance, this sequence contains a wealth of subtle and fascinating properties. In this paper we explore several of the fundamental identities related with $A_{k, n}^{L}$.

II. The associated left k-Fibonacci numbers:

Definition: The sequence of associated left k Fibonacci numbers $\left\{A_{k, n}^{L}\right\}$ associate to left k-Fibonacci sequence $\left\{F_{k, n}^{L}\right\}[4]$ is defined as

$$
\begin{gathered}
A_{k, 0}^{L}=1 \text { and } \\
A_{k, n}^{L}=F_{k, n}^{L}+F_{k, n-1}^{L}, n=1,2,3 \ldots
\end{gathered}
$$

We observe that the expression $A_{k, n}^{L}$ is the sum of the two consecutive left k-Fibonacci numbers $F_{k, n}^{L}$ and its predecessor $F_{k, n-1}^{L}$. The members of the sequence $\left\{A_{k, n}^{L}\right\}$ will be called associated left k-Fibonacci numbers. An equivalent definition for the sequence $\left\{A_{k, n}^{L}\right\}$ is

$$
A_{k, n}^{L}= \begin{cases}1 & \text {, if } n=0 \\ 1 & \text {, if } n=1 \\ (k+1) F_{k, n-1}^{L}+F_{k, n-2}^{L}, \text { if } n \geq 2\end{cases}
$$

Observe that
$A_{k, n}^{L}=F_{k, n}^{L}+F_{k, n-1}^{L}=k F_{k, n-1}^{L}+F_{k, n-2}^{L}+k F_{k, n-2}^{L}+F_{k, n-3}^{L}$
$=k\left(F_{k, n-1}^{L}+F_{k, n-2}^{L}\right)+F_{k, n-2}^{L}+F_{k, n-3}^{L}$
$=k A_{k, n-1}^{L}+A_{k, n-2}^{L}$
This allows defining recursively the sequence of associated left k-Fibonacci numbers as follows:

$$
A_{k, n}^{L}=k A_{k, n-1}^{L}+A_{k, n-2}^{L}
$$

III. Some Interesting identities of $\left\{A_{k, n}^{L}\right\}$.

One of the purposes of this paper is to develop many identities and results. We use the technique of induction as a useful tool in proving many of these identities and theorems involving Fibonacci numbers.

We derived the interesting extended reduction formula for $A_{k, n}^{L}$.
Identity 3.1 (Reduction Formula)
$A_{k, \mathrm{~m}+\mathrm{n}}^{L}=A_{k, \mathrm{~m}-1}^{L} A_{k, n}^{L}+A_{k, \mathrm{~m}}^{L} A_{k, n+1}^{L}-\mathrm{A}_{k, \mathrm{~m}+\mathrm{n}-1}^{L}$.
Proof Let m be a fixed integer and we proceed by inducting on n.

For $n=1$, we have

$$
\begin{aligned}
& A_{k, \mathrm{~m}+1}^{L}=A_{k, \mathrm{~m}-1}^{L} A_{k, 1}^{L}+A_{k, \mathrm{~m}}^{L} A_{k, 2}^{L}-\mathrm{A}_{k, \mathrm{~m}}^{L} \\
& A_{k, \mathrm{~m}+1}^{L}=A_{k, \mathrm{~m}-1}^{L}(1)+A_{k, \mathrm{~m}}^{L}(\mathrm{k}+1)-\mathrm{A}_{k, \mathrm{~m}}^{L} \\
& A_{k, \mathrm{~m}+1}^{L}=k A_{k, \mathrm{~m}}^{L}+A_{k, \mathrm{~m}-1}^{L}, \quad\left(\because A_{k, 1}^{L}=1, A_{k, 2}^{L}=k+1\right)
\end{aligned}
$$

This is obvious.
Now let us assume that the result is true for

$$
\begin{aligned}
& n=1,2,3, \cdots, \mathrm{t} \\
& A_{k, \mathrm{~m}+t}^{L}=A_{k, \mathrm{~m}-1}^{L} A_{k, \mathrm{t}}^{L}+A_{k, \mathrm{~m}}^{L} A_{k, \mathrm{t}+1}^{L}-A_{k, \mathrm{~m}+\mathrm{t}-1}^{L} \text { and } \\
& A_{k, \mathrm{~m}+\mathrm{t}-1)}^{L}=A_{k, \mathrm{~m}-1}^{L} A_{k, \mathrm{t}-1}^{L}+A_{k, \mathrm{~m}}^{L} A_{k, \mathrm{t}}^{L}-A_{k, \mathrm{~m}+\mathrm{t}-2}^{L}
\end{aligned}
$$

We will show that it holds for $n=t+1$, also from above two equation, we have

$$
\begin{aligned}
& A_{k, \mathrm{~m}+\mathrm{t}+1}^{L}=k A_{k, \mathrm{~m}+t}^{L}+A_{k, \mathrm{~m}+(\mathrm{t}-1)}^{L} \\
& =k\left(\mathrm{~A}_{k, \mathrm{~m}-1}^{L} A_{k, \mathrm{t}}^{L}+A_{k, \mathrm{~m}}^{L} A_{k, \mathrm{t}+1}^{L}\right)+\left(\mathrm{A}_{k, \mathrm{~m}-1}^{L} A_{k, \mathrm{t}-1}^{L}+A_{k, \mathrm{~m}}^{L} A_{k, \mathrm{t}}^{L}\right)
\end{aligned}
$$

$$
=A_{k, m-1}^{L}\left(k A_{k, t}^{L}+A_{k, t-1}^{L}\right)+A_{k, \mathrm{~m}}^{L}\left(\mathrm{kA}_{k, t+1}^{L}+A_{k, t}^{L}\right)-\left(k \mathrm{~A}_{k, \mathrm{~m}+\mathrm{t}-1}^{L}+A_{k, \mathrm{~m}+}^{L}\right.
$$

$$
=A_{k, \mathrm{~m}-1}^{L} A_{k, t+1}^{L}+A_{k, \mathrm{~m}}^{L} A_{k,(t+1)+1}^{L}-A_{k, \mathrm{~m}+\mathrm{t}}^{L}=A_{k, \mathrm{~m}+(t+1)}^{L}
$$

Thus the result is true for all $n \in N$. This proves the result.

It is often useful to extend the sequence of associated left k - Fibonacci numbers backward with negative subscripts. In fact if we try to extend the associated left k - Fibonacci sequence backward still keeping to the same rule, we get the following:

$$
\begin{array}{lc}
n & A_{k, \mathrm{n}}^{L} \\
-1 & 1-k \\
-2 & 1-k+k^{2} \\
-3 & 1-2 k+k^{2}-k^{3} \\
-4 & 1-2 k+3 k^{2}-\mathrm{k}^{3}+\mathrm{k}^{4} \\
-5 & 1-3 k+3 k^{2}-4 k^{3}+k^{4}-k^{5}
\end{array}
$$

Thus the sequence of associated left k - Fibonacci numbers is bilateral sequence, since it can be extended infinitely in both directions.
We next prove the divisibility property for $A_{k, \mathrm{n}}^{L}$.
Identity 3.2 $A_{k, m}^{L} \mid \mathrm{A}_{k, m n}^{L}$ for all non-zero integers m, n

Proof: Let m be fixed and we will proceed by inducting on n.
For $n=1$. Then it is clear that $A_{k, m}^{L} \mid \mathrm{A}_{k, m}^{L}$.
\therefore The result is true for $n=1$. Assume that the result is true for all $n=1,2,3, \cdots, t$.
Thus $A_{k, m}^{L} \mid \mathrm{A}_{k, m t}^{L}$ holds by assumption.
To prove the result is true for $n=t+1$. Using lemma
4.3.6, we get
$A_{k, m(t+1)}^{L}=A_{k, m t+m}^{L}$
$=A_{k, m t-1}^{L} A_{k, m}^{L}+A_{k, m t}^{L} A_{k, m+1}^{L}-A_{k, m t+m-1}^{L}$
$=A_{k, m t-1}^{L} A_{k, m}^{L}+A_{k, m t}^{L} A_{k, m+1}^{L}-\left(A_{k, m-1}^{L} A_{k, m-1}^{L}+A_{k, m t}^{L} A_{k, m}^{L}-A_{k, m+m-2}^{L}\right)$
Continuously expand this expression; as by assumption $A_{k, m}^{L} \mid \mathrm{A}_{k, m t}^{L}$
$A_{k, m}^{L}$ divides the entire right side of the equation.
Hence $A_{k, m}^{L} \mid \mathrm{A}_{k, m(t+1)}^{L}$. Thus result is true for all $n \geq 1$.
We next derive the formula for the sum of the squares of first n associated left k - Fibonacci numbers.
Identity 3.3
$A_{k, 1}^{L}{ }^{2}+A_{k, 2}^{L}{ }^{2}+A_{k, 3}^{L}{ }^{2}+\cdots+A_{k, n}^{L}{ }^{2}=\frac{1}{k}\left(A_{k, n}^{L} A_{k, n+1}^{L}-1\right)$.
Proof: Since we have $A_{k, m}^{L}=\frac{1}{k}\left(A_{k, m+1}^{L}-A_{k, m-1}^{L}\right)$
We observe that $A_{k, \mathrm{~m}}^{L}{ }^{2}=A_{k, \mathrm{~m}}^{L} A_{k, \mathrm{~m}}^{L}$
$=A_{k, \mathrm{~m}}^{L}\left[\frac{1}{k}\left(A_{k, m+1}^{L}-A_{k, m-1}^{L}\right)\right]=\frac{1}{k}\left(A_{k, m}^{L} A_{k, m+1}^{L}-A_{k, m}^{L} A_{k, m-1}^{L}\right)$
Replacing $m=1,2,3 \cdots n$, we have
$A_{k, 1}^{L 2}=\frac{1}{k}\left(\mathrm{~A}_{k, 1}^{L} A_{k, 2}^{L}-\mathrm{A}_{k, 1}^{L} A_{k, 0}^{L}\right)$
$A_{k, 2}^{L}{ }^{2}=\frac{1}{k}\left(\mathrm{~A}_{k, 2}^{L} A_{k, 3}^{L}-A_{k, 1}^{L} A_{k, 2}^{L}\right)$
$A_{k, 3}^{L}{ }^{2}=\frac{1}{k}\left(\mathrm{~A}_{k, 3}^{L} A_{k, 4}^{L}-A_{k, 2}^{L} A_{k, 3}^{L}\right)$
$A_{k, \mathrm{n}-1}^{L}{ }^{2}=\frac{1}{k}\left(\mathrm{~A}_{k, \mathrm{n}-1}^{L} A_{k, \mathrm{n}}^{L}-A_{k, \mathrm{n}-2}^{L} A_{k, \mathrm{n}-1}^{L}\right)$
$A_{k, \mathrm{n}}^{L}{ }^{2}=\frac{1}{k}\left(\mathrm{~A}_{k, \mathrm{n}}^{L} A_{k, \mathrm{n}+1}^{L}-A_{k, \mathrm{n}-1}^{L} A_{k, \mathrm{n}}^{L}\right)$
Adding all these equations, we get
$A_{k, 1}^{L}{ }^{2}+A_{k, 2}^{L}{ }^{2}+A_{k, 3}^{L{ }^{2}}+\cdots+A_{k, n}^{L}{ }^{2}=\frac{1}{k}\left(A_{k, n}^{L} A_{k, n+1}^{L}-\mathrm{A}_{k, 1}^{L} A_{k, 0}^{L}\right)$
$=\frac{1}{k}\left(A_{k, n}^{L} A_{k, n+1}^{L}-1\right)$.
The following result follows immediately from this lemma.
Corollary 3.4 $A_{k, n}^{L} A_{k, n+1}^{L} \equiv 1(\bmod k)$.
Proof: We use Mathematical Induction to prove the result.
For $n=1$, we have
$A_{k, 1}^{L} A_{k, 2}^{L}=1(1+k)=1+k \equiv 1(\bmod k)$
Suppose it is true for $n=r$, Thus $F_{k, \mathrm{r}}^{R} F_{k, \mathrm{r}+1}^{R} \equiv 1(\bmod k)$ holds.
Now, $A_{k, \mathrm{r}+1}^{L} A_{k, \mathrm{r}+2}^{L}=A_{k, \mathrm{r}+1}^{L}\left(k A_{k, \mathrm{r}+1}^{L}+A_{k, \mathrm{r}}^{L}\right)$.

$$
=k A_{k, r+1}^{L}{ }^{2}+A_{k, r+1}^{L} A_{k, r}^{L} \equiv 1(\bmod k)
$$

So the result is true for $n=r+1$ also. This proves the result for all integers n.

Similarly, we can prove the second result.
We finally prove the extended Cassini's identity.
Identity 3.5 (Cassini's identity)
$A_{k, \mathrm{n}+1}^{L} A_{k, \mathrm{n}-1}^{L}-A_{k, \mathrm{n}}^{L}{ }^{2}=k(-1)^{n+1}$.
Proof: We have
$A_{k, \mathrm{n}+1}^{L} A_{k, \mathrm{n}-1}^{L}-A_{k, \mathrm{n}}^{L}{ }^{2}=\left(k A_{k, \mathrm{n}}^{L}+A_{k, \mathrm{n}-1}^{L}\right) A_{k, \mathrm{n}-1}^{L}-A_{k, \mathrm{n}}^{L}{ }^{2}$

$$
=k A_{k, n}^{L} A_{k, n-1}^{L}-A_{k, n}^{L}{ }^{2}+A_{k, n-1}^{L}{ }^{2}
$$

$$
=A_{k, \mathrm{n}}^{L}\left(k A_{k, \mathrm{n}-1}^{L}-A_{k, \mathrm{n}}^{L}\right)+A_{k, \mathrm{n}-1}^{L}{ }^{2}
$$

$$
=-A_{k, \mathrm{n}}^{L} A_{k, \mathrm{n}-2}^{L}+A_{k, \mathrm{n}-1}^{L}{ }^{2}
$$

$$
=(-1)\left(A_{k, \mathrm{n}}^{L} A_{k, \mathrm{n}-2}^{L}-A_{k, \mathrm{n}-1}^{L}{ }^{2}\right)
$$

Repeating the same process successively for right side, we get

$$
\begin{aligned}
& \therefore A_{k, \mathrm{n}+1}^{L} A_{k, \mathrm{n}-1}^{L}-A_{k, \mathrm{n}}^{L}{ }^{2}=(-1)^{1}\left(A_{k, \mathrm{n}}^{L} A_{k, \mathrm{n}-2}^{L}-A_{k, \mathrm{n}-1}^{L}{ }^{2}\right) \\
& =(-1)^{2}\left(A_{k, \mathrm{n}-1}^{L} A_{k, \mathrm{n}-3}^{L}-A_{k, \mathrm{n}-2}^{L}{ }^{2}\right) \\
& =(-1)^{3}\left(A_{k, \mathrm{n}-2}^{L} A_{k, \mathrm{n}-4}^{L}-A_{k, \mathrm{n}-3}^{L}{ }^{2}\right) \\
& =(-1)^{n}\left(A_{k, 1}^{L} A_{k,-1}^{L}-A_{k, 0}^{L}{ }^{2}\right) \\
& =(-1)^{n}(1(1-k)-1) \\
& =k(-1)^{n+1} .
\end{aligned}
$$

IV. Generating function of associated left kFibonacci numbers

Generating function provide a powerful tool for solving linear homogeneous recurrence relation with constant coefficients. In 1718, the French mathematician Abraham De Moivre (1667-1754) invented generating functions in order to solve the Fibonacci recurrence relation. Let $a_{0}, a_{1}, a_{2}, \cdots$ be a sequence of real numbers. Then the function

$$
g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots a_{n} x^{n}+\cdots
$$

is called the generating function for the sequence $\left\{a_{n}\right\}$. We can also define generating functions for the finite sequence $a_{0}, a_{1}, \ldots, a_{n}$ by letting $a_{i}=0$. For $i>n$. Thus $g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ is the generating function for the finite sequence $a_{0}, a_{1}, \ldots, a_{n}$. For example, function $g(x)=1+2 x+3 x^{2}+\cdots+$ $(n+1) x^{n}+\cdots$ is the generating function for the sequence of positive integer,
where as $f(x)=1+3 x+6 x^{2}+\cdots+\frac{n(n+1)}{2} x^{n}$ is the generating function for the sequence of triangular numbers $1,3,6,10, \ldots$
two generating function $f(x)=\sum_{0}^{\infty} a_{n} x^{n}$ and $\sum_{0}^{\infty} b_{n} x^{n}$ be two generating functions. Then $f(x)+$ $g(x)=\sum_{0}^{\infty}\left(a_{n}+b_{n}\right) x^{n} \quad$ and $f(x) g(x)=\sum_{n=0}^{\infty}\left(\sum_{i=0}^{\infty} a_{i} b_{n-i}\right) x^{n}$
The associated left k-Fibonacci number which is defined as $A_{k, \mathrm{n}+1}^{L}=k A_{k, \mathrm{n}}^{L}+A_{k, \mathrm{n}-1}^{L}, \quad n \geq 1$ with initial condition $A_{k, 0}^{L}=1$ is a second order difference equation with constant coefficient. Therefore, it has the characteristic equation $x^{2}-k x-1=0$.
Theorem 4.1 The generating function for the generalized associated left k - Fibonacci sequence $\left\{A_{k, n}^{L}\right\}_{n=0}^{\infty}$ is given by $f(x)=\frac{1+x-k x}{1-k x-x^{2}}$.
Proof: We begin with the formal power series representation of generating function for $\left\{A_{k, n}^{L}\right\}$ that is for $\left\{g_{n}\right\}$.
$f(x)=\sum_{m=0}^{\infty} A_{k, m}^{L} x^{m}=\sum_{m=0}^{\infty} g_{m} x^{m}=g_{0}+g_{1} x+g_{2} x^{2}+\cdots$
$=1+(1) x+\left(k g_{1}+g_{0}\right) x^{2}+\left(k g_{2}+g_{1}\right) x^{3}+\left(k g_{3}+g_{2}\right) x^{4}+\cdots$
$=1+x+k x\left(g_{1} x+g_{2} x^{2}+\cdots\right)+x^{2}\left(g_{0}+g_{1} x+g_{2} x^{2}+\cdots\right)$
This work has been supported in part by UGC Minor Project number F. 47-901/14 (WRO) from Ministry of Human resource Development, Govt. of India.

VII. REFERENCES

[1]. Alvaro H. Salas: About k-Fibonacci Numbers and their Associated Numbers, International Mathematical Forum, Vol. 6 (2011), Issue 50, page 2473-2479.
[2]. Arvadia Mansukh P., Shah Devbhadra V.: Right kFibonacci sequence and related identities, International Research Journal of Mathematics, Engineering \& IT, Volume-2, Issue-4 (2015), 25-39.
[3]. Arvadia Mansukh P., Shah Devbhadra V.: Left kFibonacci Sequence and Related Identities, Journal Club for Applied Sciences, V-2, I-1(2015), 20-26.
[4]. Cennet Bolat, Hasan Kose: On the properties of kFibonacci Numbers, Int. J. Contemp. Math. Sciences, Vol. 5, (2010), No. 22, 1097-1105.
[5]. Falcon S: A simple proof of an interesting Fibonacci generalization, International Journal of Mathematics Education, Science and Technology, 35, No. 2, (2004), 259-261.
[6]. Falcon S., Plaza, A :On the Fibonacci k-numbers, Chaos, Solitons \& Fractals, 32 (5) (2007) 1615-24.
[7]. Falcon S., Plaza, A :The k-Fibonacci sequence and Pascal 2-triangle, Chaos, Solitons \& Fractals (33) (1) (2007) 38-49.
[8]. Koshy Thomas: Fibonacci and Lucas Numbers with $=1+x+k x\left(g_{0}+g_{1} x+g_{2} x^{2}+\cdots\right)-k x+x^{2}\left(g_{0}+g_{1} x+g_{2} x^{2}+\cdots\right)$ applications, John Wiley and Sons, Inc., N. York, 2001.
$=1+x+k x f(x)+x^{2} f(x)-k x$
$\therefore\left(1-k x-x^{2}\right) f(x)=1+x-k x \Rightarrow f(x)=\frac{1+x-k x}{1-k x-x^{2}}$
[9]. Marcia Edson, Omer Yayenie: A new generalization of Fibonacci sequence and extended Binet's formula, Integers, Volume 9, Issue 6, (2009), 639-654.

This is the generating function for the generalized
associated left k - Fibonacci sequence $\left\{A_{k, n}^{L}\right\}_{n=0}^{\infty}$.

V. CONCLUSION

A new generalized associated left k-Fibonacci sequence has been introduced and deducted their identities, generating function and results.

VI. ACKNOWLEDGEMENT

